formulas of centrifugal pump|centrifugal pump flow rate chart : trading In pumping system, Head means it is a height of a liquid column. In vertical pipe any liquid coloumn of water exerts a certain pressure (force per unit area) on a horizontal surface at … See more Screw vacuum pump exhaust process, the volume between the teeth and exhaust port after the connection, that is the start of the exhaust process. With the decreasing of the volume between the teeth, the gas with exhaust pressure is gradually discharged through the exhaust orifice. Dry screw vacuum pump working principle
{plog:ftitle_list}
Two Screw Pump – Also termed as twin-screw pump mostly employed for high range of power applications. Three Screw Pump – Here one gear receives power from the source, and this drives the other two gears. Four .
Centrifugal pumps are widely used in various industries for the transportation of fluids. Understanding the key formulas associated with centrifugal pumps is essential for designing and operating these pumps effectively. In this article, we will explore important formulas related to centrifugal pumps, including the calculation of fluid volume, velocity, Reynolds number, and more.
Volume of the fluid (Q ) Velocity of the Fluid ( V ) Here V = Velocity of fluid in m/sec Q =Volume of Fluid (m3/sec) A = Pipe line area (m2) V = Velocity of fluid in m/sec Q =Volume of Fluid in m3/hr A = Pipe line dia in mm ReynoldsNumberof the fluid HereD = Dia of the tube in meters V = fluid velocity in m/sec ρ=density
Volume of the Fluid (Q)
The volume of fluid flowing through a centrifugal pump can be calculated using the formula:
\[ Q = A \times V \]
Where:
- \( Q \) = Volume of fluid (m³/sec)
- \( A \) = Pipe line area (m²)
- \( V \) = Velocity of fluid in m/sec
Velocity of the Fluid (V)
The velocity of the fluid in a centrifugal pump can be determined by the formula:
\[ V = \frac{Q}{A} \]
Where:
- \( V \) = Velocity of fluid in m/sec
- \( Q \) = Volume of fluid in m³/hr
- \( A \) = Pipe line diameter in mm
Reynolds Number of the Fluid
The Reynolds number of the fluid flowing through a centrifugal pump can be calculated using the formula:
\[ Re = \frac{D \times V \times \rho}{\mu} \]
Where:
- \( Re \) = Reynolds number
- \( D \) = Diameter of the tube in meters
- \( V \) = Fluid velocity in m/sec
- \( \rho \) = Density of the fluid
- \( \mu \) = Viscosity of the fluid
Hydraulic Pump Power The ideal hydraulic power to drive a pump depends on liquid density , differential height to lift the material and flow rate of the material. Here 1. Hydraulic power in
Read Also: Working of Screw Pump. Difference between the Gear Pump and Peristaltic Pump. The major difference between the peristaltic pump and the gear pump is given below: Peristaltic Pump Gear Pump; The volume of the pump .
formulas of centrifugal pump|centrifugal pump flow rate chart